Algebraic L -Theory, II: Laurent Extensions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled algebraic G-theory, II

There are two established ways to introduce geometric control in the category of free modules—the bounded control and the continuous control at infinity. Both types of control can be generalized to arbitrary modules over a noetherian ring and applied to study algebraic K-theory of infinite groups. This was accomplished for bounded control in part I of the present paper and the subsequent work o...

متن کامل

Diagonalization and Rationalization of Algebraic Laurent Series

— We prove a quantitative version of a result of Furstenberg [20] and Deligne [13] stating that the the diagonal of a multivariate algebraic power series with coefficients in a field of positive characteristic is algebraic. As a consequence, we obtain that for every prime p the reduction modulo p of the diagonal of a multivariate algebraic power series f with integer coefficients is an algebrai...

متن کامل

Noncommutative localisation in algebraic K-theory II

In [Amnon Neeman, Andrew Ranicki, Noncommutative localisation in algebraic K-theory I, Geom. Topol. 8 (2004) 1385–1425] we proved a localisation theorem in the algebraic K-theory of noncommutative rings. The main purpose of the current article is to express the general theorem of the previous paper in a more user-friendly fashion, in a way more suitable for applications. In the process we compa...

متن کامل

Algebraic Extensions of Normed Algebras

Disclaimer: This dissertation does not contain plagiarised material; except where otherwise stated all theorems are the author's. Acknowledgement: Many thanks to Joel Feinstein for guidance with the literature, useful suggestions and comments on this work.

متن کامل

Algebraic Extensions for Symbolic Summation

The main result of this thesis is an effective method to extend Karr’s symbolic summation framework to algebraic extensions. These arise, for example, when working with expressions involving (−1)n. An implementation of this method, including a modernised version of Karr’s algorithm is also presented. Karr’s algorithm is the summation analogue of the Risch algorithm for indefinite integration. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 1973

ISSN: 0024-6115

DOI: 10.1112/plms/s3-27.1.126